<八年级上册数学等腰三角形的性质定理知识点-百科知识-满米百科
> 百科知识 > 列表
八年级上册数学等腰三角形的性质定理知识点
时间:2024-12-23 21:05:56
答案

一.选择题(共8小题)

1.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为(  )

A. BD=CE B. AD=AE C. DA=DE D. BE=CD 

2.等腰三角形的一个角是80°,则它顶角的度数是(  )

A. 80° B. 80°或20° C. 80°或50° D. 20°

3.已知实数x,y满足 ,则以x,y的值为两边长的等腰三角形的周长是(  )

A. 20或16 B. 20 C. 16 D. 以上答案均不对 

4.如图,在△ABC中,AB=AC,∠A=40°,

BD为∠ABC的平分线,则∠BDC的度数是(  )

A. 60° B. 70° C. 75° D. 80° 

5.已知等腰三角形 的两边长分别是3和5,则该三角形的周长是(  )

A. 8 B. 9 C. 10或12 D. 11或13

6.如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于(  )

A. 80° B. 70° C. 60° D. 50°

7.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,

则这个等腰三角形的底边长为(  )

A. 7 B. 11 C. 7或11 D. 7或10

8.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为(  )

A. 60° B. 120° C. 60°或150° D. 60°或120°

二.填空题(共10小题) 

9.已知等腰三角形的一个内角为80°,则另两个角的度数是 _________ . 

10.如图,已知AB∥CD,AB=AC,∠ABC=68°,则∠ACD= _________ .

第10题 第11题 第12题 第13题

11.如图,在△ABC中,AB=AC,△ABC的外角∠DAC=130°,则∠B = _________ °.

12.如图,AB∥CD,AE=AF,CE交AB于点F,∠C=110°,则∠A=________°.

13.如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D,则BD=_________ . 

14.如图,在△ABC中,AB=AD=DC,∠BAD=32°,则∠BAC=_________ °.

15.如图,等腰△ABC中,AB=AC,AD平分∠BAC,点E是线段BC 延长线上一点,连接AE,点C在AE的垂直平分线上,若DE=10cm,则AB+BD= _________ cm.

16.如图,在△ABC中,AB=AC,CD平分∠ACB,∠A=36°,则∠BDC的度数为 _________.

17.如图,在△ABC中,AB=AC,点D为BC边的中点,∠BAD=20°,则∠C= _________ .

18.如图,在△ABC中,AB=AC,∠A=80°,E,F,P分别是AB,AC,BC边上一点,且BE=BP,CP=CF,则∠EPF= _________ 度.

三.解答题(共5小题)

19.(2005•云南)已知:如图,在等腰△ABC中,AB=AC,O是底边BC上的中点,OD⊥AB于D,OE⊥AC于E.求证:AD=AE.

20.(2024•随州)如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.

求证:(1)△ABD≌△ACD;

(2)BE=CE.

21. (2009•河南)如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并给出证明.

22.如图,在△ABC中,D、E分别是AC和AB上的点,BD与CE相交于点O,给出下列四个条件:

①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.

(1)上述四个条件中,由哪两个条件可以判定AB=AC?(用序号写出所有的情形)

(2)选择(1)小题中的一种情形,说明AB=AC.

23.(1)如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,分别交AB、AC于点D、E.判断DE=DB+EC是否成立?为什么?

(2)如图,若点F是∠ABC的平分线和外角∠ACG的平分线的交点,其他条件不变,请猜想线段DE、DB、EC之间有何数量关系?证明你的猜想.

第1课时 等腰三角形的性质

一、CBBCDCCD

二、9、50°,50°或80°,20°;10、44;11、65;12、40;13、3;1 4、69;15、10;

16、72;17、70;18、50

三、19、证明:∵AB=AC,

∴∠B=∠C.

∵OD⊥AB,OE⊥AC,

∴∠ODB=∠OEC=90°.

∵O是底边BC上的中点,

∴OB=OC,

在△ OBD与△OCE中,

∴△OBD≌△OCE( AAS).

∴BD=CE.

∵AB=AC,

∴AB﹣BD=AC﹣CE.

即AD=AE.

20、证明:(1)∵D是BC的中点,

∴BD=CD,

在△ABD和△ACD中, ,

∴△ABD≌△ACD(SSS); …(4分)

(2)由(1)知△ABD≌△ACD,

∴∠BAD=∠CAD,即∠BAE=∠CAE,

在△ABE和△ACE中,

∴△ABE≌△ACE (SAS),

∴BE=CE(全等三角形的对应边相等).

(其他正确证法同样给分) …(4分)

21、解:OE⊥AB.

证明:在△BAC和△ABD中, ,

∴△BAC≌△ABD(SAS).

∴∠OBA=∠OAB,

∴OA=OB.

又∵AE=BE,∴OE⊥AB.

答:OE⊥AB.

22、(1)答:有①③、①④ 、②③、②④共4种情形.

(2)解:选择①④,证明如下:

∵OB=OC,

∴∠OBC=∠OCB,

又∵∠EBO=∠DCO,

∴∠EBO+∠OBC=∠DCO+∠OCB,

即∠ABC=∠ACB,

∴AC=AB.

②④

理由是:在△BEO和△CDO中

∵ ,

∴△BEO≌△CDO,

∴∠EBO=∠DCO,

∵OB=OC,

∴∠OBC=∠OCB,

∴∠ABC=∠ACB,

∴AB=AC,

23、解:(1)成立;

∵△ABC中BF、CF平分∠ABC、∠ACB,

∴∠1=∠2,∠5=∠4.

∵DE∥BC,∴∠2=∠3,∠4=∠6.

∴∠1=∠3,∠6=∠5.

根据在同一个三角形中,等角对等边的性质,可知:BD=DF,EF=CE.

∴DE=DF+EF=BD+CE.

故成立.

(2)∵BF分∠ABC,

∴∠DBF=∠FBC.

∵DF∥BC,∴∠DFB=∠FBC.

∴∠ABF=∠DFB,

∴BD=DF.

∵CF平分∠ACG,

∴∠ACF=∠FCG.

∵DF∥BC,

∴∠DFC=∠FCG.

∴∠ACF=∠DFC,

∴CE=EF.

∵EF+DE=DF,即DE+EC=BD.

推荐
© 2024 满米百科