<等比数列性质推导-常识百科-满米百科
> 常识百科 > 列表
等比数列性质推导
时间:2024-12-23 19:15:11
答案

等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。其中{an}中的每一项均不为0。注:q=1 时,an为常数列。

(1)定义式:

(2)通项公式(等比数列通项公式通过定义式叠乘而来):

(3)求和公式:

求和公式用文字来描述就是:Sn=首项(1-公比的n次方)/1-公比(公比≠1)如果公比q=1,则等比数列中每项都相等,其通项公式为 ,任意两项 , 的关系为 ;在运用等比数列的前n项和时,一定要注意讨论公比q是否为1.

(4)从等比数列的定义、通项公式、前n项和公式可以推出:

(5)等比中项:

若 ,那么 为 等比中项。

记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1。

另外,一个各项均为正数的等比数列各项取同底数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

等比中项定义:从第二项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项。

等比中项公式: 或者 。

(6)无穷递缩等比数列各项和公式:

无穷递缩等比数列各项和公式:公比的绝对值小于1的无穷等比数列,当n无限增大时的极限叫做这个无穷等比数列各项的和。

(7)由等比数列组成的新的等比数列的公比:{an}是公比为q的等比数列

1.若A=a1+a2+……+an

B=an+1+……+a2n

C=a2n+1+……a3n

则,A、B、C构成新的等比数列,公比Q=qn

2.若A=a1+a4+a7+……+a3n-2

B=a2+a5+a8+……+a3n-1

C=a3+a6+a9+……+a3n

则,A、B、C构成新的等比数列,公比Q=q[2] 。

性质

(1)若m、n、p、q∈N+,且m+n=p+q,则am×an=ap×aq。

(2)在等比数列中,依次每k项之和仍成等比数列。

(3)若“G是a、b的等比中项”则“G2=ab(G≠0)”。

(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1^2,q1^3…{can},c是常数,{an×bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2。

(5)若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数。

(6)等比数列前n项之和

在等比数列中,首项A1与公比q都不为零。

注意:上述公式中An表示A的n次方。

(7)由于首项为a1,公比为q的等比数列的通项公式可以写成an=(a1/q)×qn,它的指数函数y=ax有着密切的联系,从而可以利用指数函数的性质来研究等比数列[2] 。

求通项方法

(1)待定系数法:已知an+1=2an+3,a1=1,求an?

构造等比数列an+1+x=2(an+x)

an+1=2an+x,∵an+1=2an+3 ∴x=3

∴(an+1+3)/ an+3=2

∴{an+3}为首项为4,公比为2的等比数列,所以an+3=a1×qn-1=4×2n-1,an=2n+1-3

(2)定义法:已知Sn=a·2n+b,求an的通项公式?

∵Sn=a·2n+b∴Sn-1=a·2n-1+b

∴an=Sn-Sn-1=a·2n-1[2] 。

推荐
© 2024 满米百科