圆的标准方程
(x-a)2+(y-b)2=r2
注:(a,b)是圆心坐标
圆的一般方程
x2+y2+Dx+Ey+F=0
注:D2+E2-4F>0
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距
离相等的一条直线
109定理
不在同一直线上的三点确定一个圆。
110垂径定理
垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2
圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
115推论
在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理
一条弧所对的圆周角等于它所对的圆心角的一半
117推论1
同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2
半圆(或直径)所对的圆周角是直角;90°的圆周角所
对的弦是直径
119推论3
如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理
圆的内接四边形的对角互补,并且任何一个外角都等于它
的内对角
121①直线L和⊙O相交
d<r
②直线L和⊙O相切
d=r
③直线L和⊙O相离
d>r
122切线的判定定理
经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理
圆的切线垂直于经过切点的半径
124推论1
经过圆心且垂直于切线的直线必经过切点
125推论2
经过切点且垂直于切线的直线必经过圆心
126切线长定理
从圆外一点引圆的两条切线,它们的切线长相等,
圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理
弦切角等于它所夹的弧对的圆周角
129推论
如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理
圆内的两条相交弦,被交点分成的两条线段长的积
相等
131推论
如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
132切割线定理
从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
133推论
从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离
d>R+r
②两圆外切
d=R+r
③两圆相交
R-r<d<R+r(R>r)
④两圆内切
d=R-r(R>r)
⑤两圆内含d<R-r(R>r)