设 u = (lnx)^2,dv = dx。则 du = 2lnx/x *dx,v = x
∫(lnx)^2*dx
=∫udv
=uv - ∫vdu
=x*(lnx)^2 - ∫x *2lnx/x *dx
=x*(lnx)^2 - 2∫lnx*dx
对于∫lnx*dx 再次使用分部积分法,设 m = lnx,dn = dx,则 dm = dx/x,n = x
∫lnx*dx
=∫mdn
=mn - ∫ndm
=x*lnx - ∫x*dx/x
=x*lnx - x
所以,原积分:
=x*(lnx)^2 - 2x*lnx + 2x + C