公式:(U/V)=(UV-UV)/(V^2)
分数求导,结果为0
分式求导
结果的分子=原式的分子求导乘以原式的分母-原式的分母求导乘以原式的分子
结果的分母=原式的分母的平方。
即:对于U/V,有(U/V)=(UV-UV)/(V^2)
导数公式
1.C=0(C为常数);
2.(Xn)=nX(n-1) (n∈R);
3.(sinX)=cosX;
4.(cosX)=-sinX;
5.(aX)=aXIna (ln为自然对数);
6.(logaX)=(1/X)logae=1/(Xlna) (a>0,且a≠1);
7.(tanX)=1/(cosX)2=(secX)2
8.(cotX)=-1/(sinX)2=-(cscX)2
9.(secX)=tanX secX;
10.(cscX)=-cotX cscX。
分数怎么求导
分数的导数的求法:(U/V)=(UV-UV)/(V^2)
函数商的求导法则:[f(x)/g(x)]=[f(x)g(x)-f(x)g(x)]/[g(x)]^2。
导数是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx
时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为
在x0处的导数,记作f(x0)或df(x0)/dx。
导数与函数的性质
1、单调性
(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻
点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。
(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于
等于零。
2、凹凸性
可导函数的凹凸性与其导数的单调性有关。如果函数的导函数在某个区间上单调递增,那
么这个区间上函数是向下凹的,反之则是向上凸的。
如果二阶导函数存在,也可以用它的正负性判断,如果在某个区间上恒大于零,则这个区
间上函数是向下凹的,反之这个区间上函数是向上凸的。曲线的凹凸分界点称为曲线的拐
点。