空间四边形意思是四条线段首尾相接组成的图形。
其特点在于最后一条线段的尾部与第一条线段的头部重合。如果四个顶点不共面,这样的四边形被称为空间四边形。此外,空间四边形也可以被视为由两个在同一平面内的三角形(通过他们的公共边)沿直线翻折而成。
四条线段首尾相接,并且最后一条的尾端和最初一条的首端重合,就组成一个四边形,如果四个顶点不共面,那么这样的四边形叫做空间四边形。
空间四边形ABCD可以看作同一平面内有一条公共边BD的两个三角形ABD和CBD沿着BD适当翻折而成的,因此,有关空间四边形的问题常常可以借助于平面几何中有关三角形的知识获得解决。
四边形:
1、简介
由不在同一直线上的四条线段依次首尾相接围成的封闭的平面图形或立体图形叫四边形,由凸四边形和凹四边形组成。顺次连接任意四边形上的中点所得四边形叫中点四边形,中点四边形都是平行四边形。
菱形的中点四边形是矩形,矩形中点四边形是菱形,等腰梯形的中点四边形是菱形,正方形中点四边形就是正方形。
2、定义
由不在同一直线上的四条线段依次首尾相接围成的封闭的平面图形或立体图形叫四边形。
3、分类
凸四边形四个顶点在同一平面内,对边不相交且作出一边所在直线,其余各边均在其同侧。平行四边形(包括:普通平行四边形,矩形,菱形,正方形)。梯形(包括:普通梯形,直角梯形,等腰梯形)。
凸四边形的内角和和外角和均为360度。凹四边形凹四边形四个顶点在同一平面内,对边不相交且作出一边所在直线,其余各边有些在其异侧。依次连接四边形各边中点所得的四边形称为中点四边形。
不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。中点四边形的形状取决于原四边形的对角线。
若原四边形的对角线垂直,则中点四边形为矩形;若原四边形的对角线相等,则中点四边形为菱形;若原四边形的对角线既垂直又相等,则中点四边形为正方形。