初中主要学了一次函数和二次函数,首先一次函数:
y=kx+b 的函数他是在平面内满足这个等式的所有点的集合。每个点做x y轴的平行线 与坐标轴的交点的值就是对应的 xy的解。
(1)在一次函数图像上的任取一点P(x,y),则都满足等式:y=kx+b(k≠0)。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总交于(-b/k,0)。正比例函数的图像都经过原点。
k,b决定函数图像的位置:
y=kx时,y与x成正比例:
当k>0时,直线必通过第一、三象限,y随x的增大而增大;
当k<0时,直线必通过第二、四象限,y随x的增大而减小。
y=kx+b时:
当 k>0,b>0, 这时此函数的图象经过第一、二、三象限;
当 k>0,b<0,这时此函数的图象经过第一、三、四象限;
当 k<0,b>0,这时此函数的图象经过第一、二、四象限;
当 k<0,b<0,这时此函数的图象经过第二、三、四象限。
当b>0时,直线必通过第一、二象限;
当b<0时,直线必通过第三、四象限。
特别地,当b=0时,直线经过原点O(0,0)。
这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。当k<0时,直线只通过第二、四象限,不会通过第一、三象限。
其次看二次函数:
二次函数y=ax2+bx+c(a,b,c为常数,a≠0)
在平面直角坐标系中作出二次函数y=ax2+bx+c的图像,可以看出,在没有特定定义域的二次函数图像是一条永无止境的抛物线。 如果所画图形准确无误,那么二次函数图像将是由
平移得到的
二次函数图像是轴对称图形。对称轴为直线
对称轴与二次函数图像唯一的交点为二次函数图象的顶点P。
特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。是顶点的横坐标(即x=?)。
a,b同号,对称轴在y轴左侧;
a,b异号,对称轴在y轴右侧。
二次函数图像有一个顶点P,坐标为P(h,k)。
当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)2+k(x≠0)
,
二次项系数a决定二次函数图像的开口方向和大小。
当a>0时,二次函数图象向上开口;当a<0时,抛物线向下开口。
|a|越大,则二次函数图像的开口越小
一次项系数b和二次项系数a共同决定对称轴的位置。
当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以 b/2a要大于0,所以a、b要同号
当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号
可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0 ),对称轴在y轴右