反函数的求法步骤如下:
1、将y=f(x)看成方程,解出x=f-1(y)。
2、将x,y互换得y=f-1(x)。
3、写出反函数的定义域(可根据原函数的定义域或反函数的解析式确定)。
反函数性质
1、反函数的定义域和值域分别是原函数的值域和定义域,称为互调性。
2、定义域上的单调函数必有反函数,且单调性相同(即函数与其反函数在各自的定义域上的单调性相同),对连续函数而言,只有单调函数才有反函数,但非连续的非单调函数也可能有反函数。
3、函数y=f(x)的图象与其反函数y=f-1(x)的图象关于直线y=x对称。
4、设y=f(x)与y=g(x)互为反函数,如果点(a,b)在函数y=f(x)的图像上,那么点(b,a)在它的反函数y=g(x)的图像上。
5、函数y=f(x)的反函数是y=f-1(x),函数y=f-1(x)的反函数是y=f(x),称为互反性。
6、函数y=f(x)的图象与其反函数y=f-1(x)的图象的交点,当它们是递增时,交点在直线y=x上。当它们递减时,交点可以不在直线y=x上。