<用定积分定义计算e^x在[0,1]的定积分-常识百科-满米百科
> 常识百科 > 列表
用定积分定义计算e^x在[0,1]的定积分
时间:2024-12-23 16:11:38
答案

答案为e-1

解题过程如下:

( λ->0)lim∑e^(ξi)(△xi)

=(n->∞)lim∑e^(i/n)(1/n)【其中ξi=i/n,△xi=1/n,i=1,2,...,n】

=(n->∞)lim(1/n){e^(1/n)[1-(e^(1/n))^n]/[1-e^(1/n)]}

=(n->∞)lime^(1/n)[1-e]/{n[1-e^(1/n)]}

=(n->∞)lim[1-e]/{n[1-e^(1/n)]}

=e-1

扩展资料

定理

一般定理

定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。

定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

常用积分公式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

推荐
© 2024 满米百科