一、定义、公式法
涉及计算的定义有:物质的量、阿伏加德罗常数、摩尔质量、原子量、气体摩尔体积、物质的量浓度、质量分数、溶解度、电离度、水的离子积、pH值等等。这些概念定义的本身以及之间的联系就是一些重要的化学公式。
【例1】某人造空气中N2的质量百分比为75%,O2为25%,计算该空气在标准状况下的密度为多少克/升?
即求1mol混合气体的质量。
设:取100g人造空气,则含N275g,O225g。
所以 ρ=28.9÷22.4=1.29(g/L)
【例2】 某乙酸的密度为dg/cm3,质量分数为a%,pH=b。求该密度下此乙酸的电离度。
解析 题应先从电离度的定义式入手,逐步逼近已知条件。
式中的:〔H+〕应由pH求得:pH=-1g〔H+〕=b
故〔H+〕=10-b
二、差量法
在众多的解题技巧中,“差量法”当属优秀方法之一,它常常可以省去繁琐的中间过程,使复杂的问题简单、快捷化。所谓“差量”就是指一个过程中某物质始态量与终态量的差值。它可以是气体的体积差、物质的量差、质量差、浓度差、溶解度差等。
【例3】把22.4g铁片投入到500gCuSO4溶液中,充分反应后取出铁片,洗涤、干燥后称其质量为22.8g,计算
(1)析出多少克铜?
(2)反应后溶液的质量分数多大?
解析“充分反应”是指CuSO4中Cu2+完全反应,反应后的溶液为FeSO4溶液,不能轻率地认为22.8g就是Cu!(若Fe完全反应,析出铜为25.6g),也不能认为22.8-22.4=0.4g就是铜。
分析下面的化学方程式可知:每溶解56gFe,就析出64g铜,使铁片质量增加8g(64-56=8),反过来看:若铁片质量增加8g,就意味着溶解56gFe、生成64gCu,即“差量” 8与方程式中各物质的质量(也可是物质的量)成正比。所以就可以根据题中所给的已知“差量”22.8-22.4=0.4g 求出其他有关物质的量。
设:生成Cu x g,FeSO4 y g
Fe+CuSO4 =FeSO4+Cu 质量增加
56 152 64 64-56=8
y x 22.8-22.4=0.4
故析出铜3.2克
铁片质量增加0.4g,根据质量守恒定律,可知溶液的质量必减轻0.4g,为500-0.4=499.6g。
【例4】将N2和H2的混合气体充入一固定容积的密闭反应器内,达到平衡时,NH3的体积分数为26%,若温度保持不变,则反应器内平衡时的总压强与起始时总压强之比为1∶______。
解析 由阿伏加德罗定律可知,在温度、体积一定时,压强之比等于气体的物质的量之比。所以只要把起始、平衡时气体的总物质的量为多少mol表示出来即可求解。
方法一 设起始时N2气为a mol, H2为b mol,平衡时共消耗N2气为xmol
N2+3H2 2NH3
起始(mol) a b 0
变化(mol) x 3x 2x
平衡(mol) a-x b-3x 2x
起始气体:a+bmol
平衡气体:(a-x)+( b-3x)+2x=(a+b-2x)mol
又因为:体积比=物质的量比
(注意:若N2为1mol,H2为3mol,是不够严密的。)
方法二 设平衡时混合气体总量为100mol,则其中含NH3为100×26%=26mol
N2+3H2 2NH3 物质的量减少
1 3 2 4-2=2
26mol x
x=26mol
即生成 NH3的量,就是减少量,所以反应起始时混合气体共为:100+26=126mol
比较上述两种方法,不难看出“差量法”的优越性。
【例5】在200℃时将11.6g二氧化碳和水蒸气的混合气体通过足量的Na2O2,反应完全后,固体质量增加3.6g。求混合气体的平均分子量。
=11.6÷混合气体总物质的量。
方法一 设11.6g混合气体中含xmolCO2、y mol水蒸气。
解得:x=0.1, y=0.4
方法二 分析下列框图
向固体Na2O2中通入11.6gCO2和H2O且完全反应,为何固体只增加3.6g?原来是因跑掉O2之故。根据质量守恒可知:放出O2为11.6-3.6=8g。
得:x+y=0.5(mol)
混合气体的平均分子量=11.6÷0.5=23.2
本题的两种解法虽都属“差量法”,但方法二则更简捷,可以说是“差量法”的经典之作,值得很好体会。