如果只是限定在初等数论中,那么初等数论的研究对象就比较窄,一般就是整数,甚至是自然数。高级一点的研究连分数就突破这方面的限制。
从原则上来讲,初等数论是研究负整数的,比如丢番图方程。而如果只讲最基础的整除、素数,研究自然数就够了。
初等数论最基本的工具是整除和同余,整除就是6除以2是整数,就说6能被2整除;6除以4是分数,就说6不能被2整除。同余就是两个数用同一个数(称为模)去除,看是否得到一样的余数。比如对于模7,2和9同余,3和6不同余。
附带的概念包括最大公约数等等,欧几里德算法是求最大公约数的基本方法。
向较高方向发展可以包括,原根、二次剩余、Pell方程、数论函数、素数分布、图形格点等等。总之,初等数论所用的工具不会超过初等分析。