等比数列的性质就是后面一个数是前面一个数的q倍,q不等于0就可以了。
还有的性质如:中间的数的平方是前面的数和后面的数的乘积,中间的数叫等比中项。
所以设第一个数为a,公比为q
a+a*q+a*q*q=168;
a*q-a*q*q*q*q=42,
求a6。
因为1-q*q*q=(1-q)(1+q+q*q),
所以两式相除得:
a(1+q+q*q)/a*q*(1-q)(1+q+q*q)=4
4*q*(1-q)=1
q=1/2,
那么a(1+q+q*q)=168,
a(7/4)=168,
a=96,
那么a6=96*1/2*1/2*1/2*1/2*1/2=3.所以a5,a7的等比中项等于3