直角三角形两种面积公式:第一种是S=1/2ab。第二种是使用勾股定理,如果直角三角形两直角边分别为A,B,斜边为C,那么A^2+B^2=C^2;;即直角三角形两直角边长的平方和等于斜边长的平方。如果三角形的三条边A,B,C满足A^2+B^2=C^2。
直角三角形的面积等于两直角边的积的一半。直角三角形是一个几何图形,是有一个角为直角的三角形,有普通的直角三角形和等腰直角三角形两种。
直角三角形的判定
判定1:有一个角为90°的三角形是直角三角形。
判定2:若a的平方+b的平方=c的平方,则以a、b、c为边的三角形是以c为斜边的直角三角形(勾股定理的逆定理)。
判定3∶若一个三角形30°内角所对的边是某一边的一半,那么这个三角形是以这条长边为斜边的直角三角形。
判定4:两个锐角互余的三角形是直角三角形。
判定5∶证明直角三角形全等时可以利用HL,两个三角形的斜边长对应相等,以及一个直角边对应相等,则两直角三角形全等。[定理:斜边和一条直角对应相等的两个直角三角形全等。简称为HLJ
判定6:若两直线相交且它们的斜率之积互为负倒数,则这两直线垂直。
判定7∶在一个三角形中若它一边上的中线等于这条中线所在边的一半,那么这个三角形为直角三角形。
三角形
三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;
三角形的内角和定理:三角形的三个内角的和等于180度;
三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;
三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;
三角形的三条角平分线交于一点(内心);
三角形的三边的垂直平分线交于一点(外心);
三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半。