泰勒公式是一种用于近似计算函数值的方法,它将一个函数在某个点附近展开成无穷级数。常用的泰勒公式展开有以下8个:
正弦函数的泰勒展开:
sin(x) = x - (x^3)/3! + (x^5)/5! - (x^7)/7! + ...
余弦函数的泰勒展开:
cos(x) = 1 - (x^2)/2! + (x^4)/4! - (x^6)/6! + ...
指数函数的泰勒展开:
exp(x) = 1 + x + (x^2)/2! + (x^3)/3! + ...
自然对数函数的泰勒展开:
ln(1+x) = x - (x^2)/2 + (x^3)/3 - (x^4)/4 + ...
正切函数的泰勒展开:
tan(x) = x + (x^3)/3 + (2x^5)/15 + (17x^7)/315 + ...
反正弦函数的泰勒展开:
arcsin(x) = x + (x^3)/6 + (3x^5)/40 + (5x^7)/112 + ...
反余弦函数的泰勒展开:
arccos(x) = π/2 - x - (x^3)/6 - (3x^5)/40 - ...
反正切函数的泰勒展开:
arctan(x) = x - (x^3)/3 + (x^5)/5 - (x^7)/7 + ...
这些泰勒展开公式可以用于近似计算函数在某个点的值,通过截取有限项可以得到不同精度的近似结果。