<正弦与余弦定律-生活百科-满米百科
> 生活百科 > 列表
正弦与余弦定律
时间:2024-12-23 19:39:36
答案

到高中,老师会讲的

正弦定理 在一个三角形中,各边和它所对角的正弦的比相等。

即a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形中是恒量,是此三角形外接圆的半径的两倍)

这一定理对于任意三角形ABC,都有

a/sinA=b/sinB=c/sinC=2R

R为三角形外接圆半径

证明

步骤1.

在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H

CH=a·sinB

CH=b·sinA

∴a·sinB=b·sinA

得到

a/sinA=b/sinB

同理,在△ABC中,

b/sinB=c/sinC

步骤2.

证明a/sinA=b/sinB=c/sinC=2R:

如图,任意三角形ABC,作ABC的外接圆O.

作直径BD交⊙O于D.

连接DA.

因为直径所对的圆周角是直角,所以∠DAB=90度

因为同弧所对的圆周角相等,所以∠D等于∠C.

所以c/sinC=c/sinD=BD=2R

类似可证其余两个等式。

意义

正弦定理指出了任意三角形中三条边与对应角的正弦值之间的一个关系式。

扩展

一.三角形面积公式:

1.海伦公式:

设P=(a+b+c)/2

S△=根号下P(P-a)(P-b)(P-c)

解释:假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:

S=√[p(p-a)(p-b)(p-c)]

而公式里的p为半周长:

p=(a+b+c)/2

2. S△ABC=(ab/2)·sinC=(bc/2)·sinA=(ac/2)·sinB=abc/(4R)[R为外接圆半径]

3.S△ABC=ah/2

二. 正弦定理的变形公式

(1) a=2RsinA, b=2RsinB, c=2RsinC;

(2) sinA : sinB : sinC = a : b : c;

(条件同上)

在一个三角形中,各边与其所对角的正弦的比相等,且该比值都等于该三角形外接圆的直径已知三角形是确定的,利用正弦定理解三角形时,其解似的唯一的;已知三角形的两边和其中一边的对角,由于该三角形具有不稳定性,所以其解不确定,可结合平面几何作图的方法及“大边对大角,大角对大边”定理和三角形内角和定理去考虑解决问题

(3)相关结论:

a/sinA=b/sinB=c/sinC=(a+b)/(sinA+sinB)=(a+b+c)/(sinA+sinB+sinC)

c/sinC=c/sinD=BD=2R

余弦定理性质

对于任意三角形 三边为a,b,c 三角为A,B,C 满足性质

(注:a*b、a*c就是a乘b、a乘c 。a^2、b^2、c^2就是a的平方,b的平方,c的平方。)

a^2=b^2+c^2-2*b*c*CosA

b^2=a^2+c^2-2*a*c*CosB

c^2=a^2+b^2-2*a*b*CosC

CosC=(a^2+b^2-c^2)/2ab

CosB=(a^2+c^2-b^2)/2ac

CosA=(c^2+b^2-a^2)/2bc

余弦定理证明

证明:

∵如图,有a+b=c (平行四边形定则:两个邻边之间的对角线代表两个邻边大小)

∴c·c=(a+b)·(a+b)

∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ)

整理得到c^2=a^2+b^2-2|a||b|Cosθ(注意:这里用到了三角函数公式)

再拆开,得c^2=a^2+b^2-2*a*b*CosC

同理可证其他,而下面的CosC=(c^2-b^2-a^2)/2ab就是将CosC移到左边表示一下。

平面几何证法:

在任意△ABC中

做AD⊥BC.

∠C所对的边为c,∠B所对的边为b,∠A所对的边为a

则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c

根据勾股定理可得:

AC^2=AD^2+DC^2

b^2=(sinB*c)^2+(a-cosB*c)^2

b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosB

b^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2

b^2=c^2+a^2-2ac*cosB

cosB=(c^2+a^2-b^2)/2ac

余弦定理的作用

(1)已知三角形的三条边长,可求出三个内角;

(2)已知三角形的两边及夹角,可求出第三边.

例如:已知△ABC的三边之比为:2:1,求最大的内角.

解 设三角形的三边为a,b,c且a:b:c=:2:1.

由三角形中大边对大角可知:∠A为最大的角.由余弦定理

cos A==-

所以∠A=120°.

再如△ABC中,AB=2,AC=3,∠A=π3,求BC之长.

解 由余弦定理可知

BC2=AB2+AC2-2AB×AC·cos A

=4+9-2×2×3×=7,

所以BC=7.

以上两个小例子简单说明了余弦定理的作用.

其他

从余弦定理和余弦函数的性质可以看出,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角一定是直角,如果小于第三边的平方,那么第三边所对的角是钝角,如果大于第三边的平方,那么第三边所对的角是锐角。即,利用余弦定理,可以判断三角形形状。同时,还可以用余弦定理求三角形边长取值范围。

推荐
© 2024 满米百科