【求解答案】
【求解思路】
1、分别对隐函数左右两边进行求导
2、运用三角函数的基本关系,进行化简计算,sec²x=1+tan²x
3、将含有y’的移至左边,并合并,最后得到其导数
【求解过程】
【本题知识点】
1、隐函数。隐函数是由隐式方程所隐含定义的函数。设F(x,y)是某个定义域上的函数。如果存在定义域上的子集D,使得对每个x属于D,存在相应的y满足F(x,y)=0,则称方程确定了一个隐函数。记为y=y(x)。显函数是用y=f(x)来表示的函数,显函数是相对于隐函数来说的。
如果在方程F(x,y)=0中,当x取某区间内的任一值时,相应地总有满足此方程唯一的y值存在,那么方程F(x,y)=0在该区间内确定了一个一元隐函数。类似若有一个三元方程F(x,y,z)=0所确定的二元函数z=f(x,)存在,则有可能确定一个二元隐函数。
2、隐函数求导。对于一个已经确定存在且可导的情况下,可以用复合函数求导的链式法则来进行求导。在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有 y' 的一个方程,然后化简得到 y' 的表达式。
隐函数导数的求解一般可以采用以下方法:
方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导;
方法②:隐函数左右两边对x求导(但要注意把y看作x的函数);
方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;
方法④:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。
3、三角函数的基本关系。
sinα·cscα=1
cosα·secα=1
tanα·cotα=1
sin²α+cos²α=1
sec²α-tan²α=1
csc²α-cot²α=1
tanα=sinα/cosα
cotα=cosα/sinα